Люминесцентная камера - definition. What is Люминесцентная камера
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

Декомпрессионная камера; Камера рекомпрессии
  • Гипербарическая барокамера
  • Два американских моряка внутри декомпрессионной камеры перед тренировкой
  • Водолазный барокомплекс «Спаситель» Тихоокеанского флота России
  • Одноместная декомпрессионная камера

Люминесцентная камера      

сцинтилляционная камера, прибор для наблюдения и регистрации траектории (следов, треков) ионизирующих частиц, основанный на свойстве люминофоров (См. Люминофоры) (сцинтилляторов) светиться при прохождении через них быстрых заряженных частиц. Заряженная частица теряет в веществе энергию, ионизуя и возбуждая атомы и молекулы, находящиеся вблизи её траектории. В сцинтилляторах часть энергии, потерянная частицей, преобразуется в энергию световой вспышки, которую можно регистрировать с помощью фотоэлектронных умножителей (См. Фотоэлектронный умножитель), а в некоторых случаях - ощущать хорошо адаптированным глазом (см. Сцинтилляция, Люминесценция, Спинтарископ).

Длительность свечения следа определяется свойствами люминофора и составляет обычно от 10-4 до 10-7 сек в неорганических и до 10-9 сек в органических сцинтилляторах. С каждого см длины следа ионизирующей частицы даже в лучших сцинтилляторах испускается не более 105-107 световых квантов (фотонов). Поэтому след не может быть непосредственно сфотографирован.

Впервые Л. к. была создана в 1952 советским физиком Е. К. Завойским (См. Завойский) с сотрудниками. Основными её элементами являются: сцинтиллятор, в котором образуются следы ионизирующих частиц, и высокочувствительное электронно-оптическое устройство, позволяющее в достаточной степени усилить яркость изображения следов для их наблюдения неадаптированным глазом, а также для их фотографирования или телевизионной передачи (см. Электронно-оптический преобразователь (См. Электроннооптический преобразователь)).

Схема одного из вариантов Л. к., в которой сцинтиллятором служат кристаллы йодистого цезия CsI или антрацена 1, а усилителем яркости изображения - многокаскадный электронно-оптический преобразователь (ЭОП), показана на рис. 1, а. Объектив 3 проектирует изображение следа 2 частицы в кристалле на фотокатод 4 многокаскадного электронно-оптического преобразователя. Изображение, усиленное ЭОП по яркости в 105-106 раз, появляется на выходном люминесцентном экране 5 преобразователя и может быть сфотографировано фотоаппаратом 6. На рис. 1, б показан другой вариант Л. к., где изображение следа, усиленное с помощью преобразователя, не фотографируется непосредственно, а сначала преобразуется с помощью передающей телевизионной трубки (См. Передающая телевизионная трубка) 7 в видеосигнал. В результате изображение может быть воспроизведено на экране телевизора 8, находящегося в удалённом помещении, записано с помощью магнитофона 9 или введено для обработки в быстродействующую ЭВМ 10. Контрастность и яркость изображения могут регулироваться радиотехническими средствами. В некоторых Л. к. применяется Волоконная оптика: свет распространяется от следа до фотокатода электронно-оптического преобразователя за счёт полного внутреннего отражения от стенок многочисленных тонких трубочек, наполненных жидким сцинтиллятором, или тонких нитей из сцинтиллирующей пластмассы 1, совокупность которых и составляет рабочий объём Л. к. (рис. 1, в, г). Это даёт выигрыш в эффективности собирания света в десятки или даже сотни раз по сравнению с использованием самых светосильных объективов. Однако при этом ухудшается пространственное разрешение и чёткость изображения следов.

Следы ионизирующих частиц в Л. к. (рис. 2) во многом аналогичны следам в толстослойных ядерных фотографических эмульсиях (См. Ядерная фотографическая эмульсия), Вильсона камере (См. Вильсона камера), диффузионной камере (См. Диффузионная камера), искровой камере (См. Искровая камера), пузырьковой камере (См. Пузырьковая камера) (трековые детекторы). Ширина светящихся следов α-частиц не превышает несколько мкм. Многочисленные разрывы объясняются квантовыми флуктуациями, заметно проявляющимися из-за малости полного числа фотонов, приходящих от следа на фотокатод преобразователя. Каждая светлая точка на фотографиях следов протонов (рис. 2, б) и релятивистских мезонов (рис. 2, а) образована одиночным световым квантом люминесценции, вырвавшим фотоэлектрон с фотокатода (рис. 1). Плотность таких точек на следах прямо пропорциональна величине потерь энергии частиц в веществе. Преимуществом Л. к. перед другими трековыми детекторами является высокое временное разрешение, ограниченное только величиной времени высвечивания сцинтиллятора, так как объектив и электронно-оптический преобразователь принципиально могут обеспечить временное разрешение Люминесцентная камера10-13-10-14 сек. Для отбора представляющих интерес ядерных явлений запуск Л. к. производится от системы сцинтилляционных или других детекторов частиц, включенных в схемы совпадений или антисовпадений и позволяющих установить факт попадания в объём Л. к. той или иной частицы, её остановки, вылета и т.п. Это позволяет исследовать редкие и сложные явления, в которых важно знать взаимное расположение траекторий отдельных частиц.

Быстрые нейтроны регистрируются обычно по протонам отдачи, возникающим при столкновении нейтронов с водородными атомами, входящими в состав сцинтиллятора, Медленные нейтроны (тепловые) - по заряженным частицам, образующимся в результате ядерных реакций, возбуждаемых нейтронами. Л. к. чувствительна также и к электромагнитному излучению: рентгеновские и γ-kванты образуют в её рабочем объёме электроны большой энергии, благодаря фотоэффекту, эффекту Комптона и образованию пар (см. Гамма- излучение (См. Гамма-излучение)).

Л. к. может использоваться также как высокочувствительный и безынерционный детектор в авторадиографии, дефектоскопии (См. Дефектоскопия), рентгеноскопии.

Лит.: 3авойский Е. К. [и др.], Люминесцентная камера, "ДАН СССР", 1955, т. 100, № 2, с. 241; их же, О люминесцентной камере, "Атомная энергия", 1956, № 4, с. 34; 3авойский Е. К. и Смолкни Г. Е., О межмолекулярном переносе энергии возбуждения в кристаллах, "ДАН СССР", 1956, т. 111, № 2, с. 328; Демидов Б. А., Фанченко С. Д., Наблюдение релятивистских заряженных частиц в люминесцентной камере, "Журнал экспериментальной и теоретической физики", 1960, т. 39, в. 1(7), с. 64; Принципы и методы регистрации элементарных частиц, под ред. Л. К. Л. Юан и Ву Цзян-сюн, перевод с английского, М., 1963.

С. Д. Фанченко.

Рис. 1 а, б, в, г. Схематические изображения люминесцентных камер: 1 - люминесцентный кристалл; 2 - след частицы; 3 - светосильный объектив; ЭОП - электронно-оптический преобразователь; 4 - его фотокатод; 5 - его выходной люминесцентный экран; 6 - фотоаппарат; 7 - передающая телевизионная трубка; 8 - телевизор; 9 - магнитофон; 10 - электронная вычислительная машина.

Рис. 2. Фотографии треков α-частиц, π-мезонов и протонов в кристаллах CsI и NaI, полученные с помощью люминесцентной камеры, изображенной на рис. 1, а: а - следы α-частиц, испускаемых 210Po, с энергией 5,2 Мэв, полученные при замене объектива 3 микроскопом; б - следы протонов с энергией 200 Мэв; в - следы релятивистских мезонов; г - следы протонов с энергией 100 Мэв; д - двухлучевая "звезда", образованная космической частицей в кристалле NaI.

Вильсона камера         
  • Следы радиоактивных частиц в туманной камере
  • Анимационная версия]].
  • Первая фотография, на которой зафиксирован трек позитрона
  • Следы радиоактивных частиц возникают благодаря специфическим условиям внутри камеры - в основном благодаря слою насыщенных паров изопропилового спирта

прибор для наблюдения следов заряженных частиц, созданный Ч. Вильсоном в 1912. Действие В. к. основано на явлении конденсации пересыщенного пара, т. e. на образовании мелких капелек жидкости на каких-либо центрах конденсации, например на ионах, образующихся вдоль следа быстрой заряженной частицы. Капельки достигают видимых размеров и могут быть сфотографированы. Исследуемые частицы могут либо испускаться помещаемым внутри камеры источником, либо попадать в камеру извне через прозрачное для них окно. В. к. обычно помещают в магнитное поле. Природу и свойства исследуемых частиц можно установить по величине пробега и импульса частиц. Величина импульса измеряется по искривлению следов частиц под действием магнитного поля.

Для исследования частиц с малой энергией камеры заполняют газом при давлении меньше атмосферного; для исследования частиц высоких энергий камеру наполняют газом до давлений в десятки атм. Широко варьируются размеры и форма камер, материалы их стенок. На рис. 1 и 2 приведены снимки ядерных процессов, наблюдавшихся при помощи В. к.

В. к. сыграла важную роль в изучении строения вещества. На протяжении нескольких десятилетий метод В. к. был практически единственным визуальным методом регистрации ядерных излучений. Однако в последние годы В. к. уступила место пузырьковым камерам (См. Пузырьковая камера) и искровым камерам (См. Искровая камера).

Лит.: Принципы и методы регистрации элементарных частиц, пер. с англ., М., 1963.

Е. М. Лейкин.

Рис. 1. Ядерная реакция 14N (․α, р) 17О, зарегистрированная в камере Вильсона. На снимке видны следы бомбардирующих ․α-частиц (линии, направленные снизу вверх), а также образующие вилку следы продуктов реакции - протона и ядра 17О.

Образование пары позитрон-электрон в камере Вильсона. Видны следы позитрона и электрона, образовавшихся при взаимодействии γ-кванта (не оставляющего видимого следа) с ядром свинца в свинцовом экране, перегораживающем камеру.

Камера Вильсона         
  • Следы радиоактивных частиц в туманной камере
  • Анимационная версия]].
  • Первая фотография, на которой зафиксирован трек позитрона
  • Следы радиоактивных частиц возникают благодаря специфическим условиям внутри камеры - в основном благодаря слою насыщенных паров изопропилового спирта
Камера Вильсона (конденсационная камера, туманная камера) — детектор треков быстрых заряженных частиц, в котором используется способность ионов выполнять роль зародышей водяных капель в переохлажденном перенасыщенном паре.

ويكيبيديا

Барокамера

Барока́мера (др.-греч. baros — тяжесть, давление) — это конструкция, состоящая из герметичной емкости и компрессора(насоса) способная подавать или откачивать воздух, образуя внутри камеры давления большее (гипербарические барокамеры) или меньшее (гипобарические барокамеры), чем атмосферное.